Monatshefte für Chemie 103, 1048—1054 (1972) © by Springer-Verlag 1972

Neue Ringsysteme durch thermische Behandlung von (CH₃NPF₃)₂ unter Druck

Alkyliminophosphorsäuretrihalogenide, 2. Mitt.

Von

K. Utvary und W. Czysch

Aus dem Institut für Anorganische Chemie der Technischen Hochschule Wien

Mit 3 Abbildungen

(Eingegangen am 16. August 1971)

Alkylimino Phosphoric Acid Trihalides, II: New Ring Systems by Heating (CH₃NPF₃)₂ in a Sealed Tube

Prolonged heating (several days) of $(CH_3NPF_3)_2$ in a sealed tube yields a crystalline product having the same composition as the liquid starting material. By CCl_4 -extraction of this material the tetrameric compound $(CH_3NPF_3)_4$ can be isolated. The residue is the ionic compound $(CH_3N)_4P_3F_6+PF_6^-$. Vacuum sublimation of this product yields $(CH_3N)_4P_3F_7$.

Läßt man dimeres Methyliminophosphorsäuretrifluorid einige Tage im Bombenrohr mit sich selbst reagieren, erhält man ein kristallines Produkt, das die gleiche Zusammensetzung wie das flüssige Ausgangsprodukt hat. Daraus läßt sich durch Extraktion mit CCl₄ ein Tetrameres, $(CH_3NPF_3)_4$, gewinnen; der Rückstand ist die ionisch aufgebaute Verbindung $(CH_3N)_4P_3F_6^+PF_6^-$. Aus letzterer erhält man durch Vakuumsublimation in guter Ausbeute unter Verlust von PF₅ die Verbindung $(CH_3N)_4P_3F_7$.

Im Laufe unserer Arbeiten über gemischt-halogenierte viergliedrige PN-Ringe¹ wurde auch versucht, $(CH_3NPF_3)_2$ mit PBr₅ zu $(CH_3NP)_2F_nBr_{6-n}$ (n = 0-5) umzusetzen². Dabei wurde beobachtet, daß bei der Reaktion dieser Komponenten im Bombenrohr neben Zersetzungsprodukten und dem unveränderten Ausgangsprodukt immer eine farblose kristalline Verbindung mit der exakten Zusammensetzung von Methyliminophosphorsäuretrifluorid erhalten wurde. Das gleiche Produkt erhält man auch, wenn man (CH₃NPF₃)₂ allein einige Tage im Bombenrohr auf ungefähr 130° erhitzt (Ausb. nach 7 Tagen: 50-60%). Extrahiert man das Reaktionsprodukt mit Tetrachlorkohlenstoff, so lassen sich in einer Ausbeute von 4-6% farblose würfelige Kristalle (1) gewinnen. Da sowohl diese als auch der feste Rückstand (2) und das flüssige

Ausgangsprodukt die gleiche Elementarzusammensetzung haben, können sich die Verbindungen nur durch ihre Struktur unterscheiden.

Die Molgewichtsbestimmung von 1 in Chloroform zeigt, daß diese Verbindung als Tetrameres (CH₃NPF₃)₄ vorliegt (gef. 466 \pm 15, ber. für C₄H₁₂N₄P₄F₁₂: 468,08). 1 entsteht also durch Reaktion von 2 Molekülen von (CH₃NPF₃)₂

$$2 (CH_3NPF_3)_2 \xrightarrow[Bombenrohr]{130^{\circ}} (CH_3NPF_3)_4$$
(1)

2 ist nur in Acetonitril gut löslich und außerordentlich hydrolyseempfindlich. Aus dem Massenspektrum und dem ³¹P-NMR-Spektrum ergibt sich der ionische Aufbau der Verbindung.

$$2 (CH_3NPF_3)_2 \xrightarrow[Bombenrohr]{130^\circ} (CH_3N)_4P_3F_6^+PF_6^-$$
(2)
2

Während 1 im Vak. unzersetzt sublimiert werden kann, erhält man aus 2 unter Verlust von PF_5 eine CCl_4 -lösliche Verbindung $(CH_3N)_4P_3F_7$ (3).

$$(CH_3N)_4P_3F_6^+PF_6^- \xrightarrow{Vac. Subl.} (CH_3N)_4P_3F_7^+PF_5$$
(3)
3

Strukturelle Betrachtungen³

 $(CH_3NPF_3)_4$: Das ¹H-NMR-Spektrum besteht aus einem einfachen Quartett ($\tau = 7,03$ ppm, $J_{PH} = 13,7$ Hz), das ¹⁹F-Spektrum aus einem Dublett ($J_{PF} = 833$ Hz). Damit ergibt sich, daß jede CH₃N-Gruppe von 3 P-Atomen umgeben ist und daß die 3 Fluoratome an den Phosphoratomen magnetisch äquivalent sind. In Übereinstimmung mit dem Molgewicht von 466 (tetramer) scheint Struktur 1 (Abb. 1) recht wahrscheinlich. Für ein solch symmetrisches Molekül spricht auch das sehr bandenarme IR-Spektrum. Die vier N-Atome besetzen die Ecken eines (verzerrten) Tetraeders, dem auf den vier Flächen Oktaeder aufgesetzt sind, deren Mitte die vier Phosphoratome und deren jeweils verbleibenden Ecken die Fluoratome besetzen.

 $(CH_3N)_4P_3F_6^+PF_6^-$: Das ¹H-NMR-Spektrum besteht aus einem Quartett, dem ein ungefähr 3mal so intensives Triplett überlagert ist (Quartett: $\tau = 7.08 \text{ ppm}, J_{PH} = 10.4 \text{ Hz}$; Triplett: $\tau = 6.92 \text{ ppm}, J_{PH} =$ 15.6 Hz). Das ¹⁹F-Spektrum zeigt ein einfaches Dublett, $\delta_F = 71.8 \text{ ppm},$ $J_{PF} = 704 \text{ Hz}$, das eindeutig dem PF₆⁻-Ion zuzuordnen ist. Zwei weitere Dubletts im gleichen Verschiebungsbereich zeigen noch eine Feinaufspaltung und rühren vom Kation her*. Integration des Gesamtspektrums

^{*} Herrn Prof. Dr. R. Schmutzler, Techn. Universität Braunschweig, und Herrn Doz. Dr. A. Schmidpeter, Universität München, sind wir für Hinweise und fruchtbare Diskussionen zu Dank verpflichtet.

ergibt ein Verhältnis Dublett I: Dublett II: Dublett $PF_{6}^{-} = 3:3:6$. Im ³¹P-NMR-Spektrum läßt sich das Septett der PF_{6}^{-} -Gruppe $(\delta_{P} = +146,6 \text{ ppm}, J_{PF} = 704 \text{ Hz})$ leicht vom Spektrum des Kations

Abb. 1. Strukturvorschlag für (CH₃NPF₃)₄

unterscheiden. Dieses besteht aus zwei Dubletts gleicher Intensität, die durch Überlagerung zweier Linien ein Triplett vortäuschen³.

Damit lassen sich für die Struktur folgende Schlüsse ziehen: Eine CH₃N-Gruppe ist an drei äquivalente P-Atome gebunden, die restlichen

Abb. 2. Strukturvorschlag für (CH₃N)₄P₃F₆⁺PF₆⁻

drei CH₃N-Gruppen werden nur von zwei P-Atomen aufgespalten. An jedem der drei P-Atome sitzen zwei F-Atome, und zwar je eines in äquatorialer und axialer Position. Das Kation enthält also drei magnetisch identische PF₂-Gruppen mit wahrscheinlich trigonal-bipyramidaler Struktur der P-Atome. Daraus ergibt sich Strukturmöglichkeit 2 (Abb. 2).

Wie in 1 ist das N_4 -Tetraeder erhalten geblieben. Allerdings sind ihm jetzt auf drei Flächen trigonale Bipyramiden aufgesetzt, deren Mitte die drei P-Atome und deren jeweils verbleibende zwei Ecken die Fluoratome besetzen. Interessante Aufschlüsse erhält man aus dem Massenspektrum

Neue Ringsysteme durch thermische Behandlung von (CH₃NPF₃)₂ 1051

der Verbindung. Der höchste Peak hat nicht den Wert des Kations (m/e = 323), sondern m/e = 342 (Tab. 1). Peakmatching für diesen Wert ergibt die Zusammensetzung (CH₃N)₄P₃F₇. Das heißt aber, daß Verbindung 2 im Vak. ganz oder teilweise nach Gl. (3) zerfällt.

m/e	relat. Int. (%)	Zuordnung ^a	
342	10	(CH2N) (P2F7	
323	15	$(CH_3N)_4P_3F_6$	
225	46	$(CH_3N)_3P_2F_4$	
215	100	$(CH_3N)_2P_2F_5$	
186	21	$CH_3NP_2F_5$	

Tabelle 1. Charakteristische Peaks im höheren Bereich des Massenspektrums von $(CH_3N)_4P_3F_6^+PF_6^-(2)$

^a Alle durch peak-matching gesichert.

 $\rm (CH_3N)_4P_3F_7$: Da diese Verbindung durch Verlust von PF5 aus $\rm (CH_3N)_4P_3F_6^+PF_6^-$ entsteht, sind für die Struktur zwei Möglichkeiten denkbar

 $\begin{array}{cccc} ({\rm CH_3N})_4 {\rm P_3F_7} & & ({\rm CH_3N})_4 {\rm P_3F_6^+F^-} \\ {\rm 3} & {\rm 3a} \end{array}$

Das Massenspektrum ist praktisch identisch mit dem von 2 (Tab. 1) und die Molgewichtsbestimmung in CHCl₃ ergibt 340 ± 5 (ber. für Verb. 3: 342,10). Damit erscheint 3 a ziemlich unwahrscheinlich. Darüber hinaus ist die Verbindung in CCl₄ sehr gut löslich, was ebenfalls gegen eine ionische Struktur spricht.

Zur Diskussion stellen wir die in Abb. 3 wiedergegebene Struktur. Dem zentralen N_4 -Tetraeder sind auf zwei Flächen trigonale Bipyramiden (PF_2) und auf einer Fläche ein Oktaeder (PF_3) aufgesetzt.

3 sollte zu einer Reihe von interessanten Reaktionen befähigt sein. Z. B.

 $\begin{array}{l} \mathbf{3} \,+\, \mathrm{PCl}_5 \,\rightarrow\, (\mathrm{CH}_3\mathrm{N})_4\mathrm{P}_3\mathrm{F}_6^+\mathrm{PFCl}_5^-\\ \mathbf{3} \,+\, \mathrm{B}X_3 \,\rightarrow\, (\mathrm{CH}_3\mathrm{N})_4\mathrm{P}_3\mathrm{F}_6^+\mathrm{BF}X_3^-\\ \mathbf{3} \,+\, \mathrm{SbCl}_5 \rightarrow\, (\mathrm{CH}_3\mathrm{N})_4\mathrm{P}_3\mathrm{F}_6^+\mathrm{SbFCl}_5^-. \end{array}$

Neben diesen derzeit laufenden Untersuchungen soll auch untersucht werden, ob es möglich ist, nach einer von uns schon früher entwickelten Methode¹ die teilweise oder ganz chlorierte Verbindung

$$(CH_3N)_4P_3Cl_nF_{6-n}^+PCl_6^- (n = 1-6)$$

Monatshefte für Chemie, Bd. 103/4

darzustellen. Alle Versuche, direkt aus $(CH_3NPCl_3)_2$ diese zu 2 analoge Verbindung zu synthetisieren, sind fehlgeschlagen².

Die Umsetzung von $(CH_3NPRF_2)_2$ mit $R = CH_3$, C_2H_5 im Bombenrohr führt ebenfalls zu kristallinen Produkten, die derzeit untersucht werden.

Abb. 3. Strukturvorschlag für (CH₃N)₄P₃F₇

Zum Reaktionsverlauf läßt sich zusammenfassend sagen, daß das dimere Methyliminophosphorsäuretrifluorid bei höherer Temperatur im Bombenrohr vorerst zum Tetrameren dimerisiert wird. Dieses lagert sich dann (möglicherweise über ein nicht faßbares Zwischenprodukt) in die ionische Verbindung 2 um.

Experimenteller Teil

Darstellung von (CH₃NPF₃)₄ und (CH₃N)₄P₃F₆⁺PF₆⁻

70,2 g (0,3 Mole) Methyliminophosphorsäuretrifluorid werden in einem Bombenrohr (~130 ml) auf ungefähr 130° erhitzt. Nach ungefähr zwei Tagen lassen sich in der Flüssigkeit die ersten farblosen Kristalle beobachten. Nach 7 Tagen wird die Reaktion unterbrochen, das Bombenrohr abgekühlt, geöffnet und das nicht umgesetzte (CH₃NPF₃)₂ abdestilliert (wenn man das Destillat erneut einsetzt, kann man praktisch die Ausbeute bis auf 80% Neue Ringsysteme durch thermische Behandlung von (CH₃NPF₃)₂ 1053

steigern). Das kristalline Rohprodukt wird im Vak. getrocknet; Ausb. 37,7 g (53,6% d. Th.).

Das Rohprodukt wird unter Ausschluß von Feuchtigkeit mit 400 ml CCl₄ extrahiert und dann die Extraktionslösung zur Trockene eingedampft. Zur weiteren Reinigung wird das rohe Tetramere bei 0,01 Torr und 50° Badtemp. sublimiert; 2,5 g (6.6% d. Th.) farblose, würfelige Kristalle (1), Sublimat. Pkt.: $68-70^{\circ}/760$.

 $C_4H_{12}N_4P_4F_{12}$ (468,08). Ber. C 10,26, H 2,56, N 11,96, P 26,49. Gef. C 10,32, H 2,55, N 11,86, P 26,48. MG gef. (Dampfdruckosmometer, CHCl₃): 465 + 15.

Der Extraktionsrückstand (35,2 g) wird in 50 ml absol. Acetonitril unter Kochen gelöst und die Lösung auf 5° abgekühlt; 21,1 g farblose Kristalle (2), die unter einer Schutzatmosphäre (N₂) filtriert und im Vak. getrocknet werden; Schmp. 260—270° (Zers.).

 $\begin{array}{rl} ({\rm CH_3N})_4{\rm P_3F_6}^+{\rm PF_6}^-. & {\rm Ber. \ C\ 10,26,\ H\ 2,56,\ N\ 11,96,\ P\ 26,49,\ F\ 48,70.} \\ & {\rm Gef. \ C\ 10,24,\ H\ 2,68,\ N\ 11,89,\ P\ 26,17,\ F\ 48,53.} \end{array}$

Darstellung von (CH₃N)₄P₃F₇

124,0 g (0,265 Mole) (CH₃N) $_4P_3F_6^+PF_6^-$ wurden in 30g-Portionen bei 0,005 Torr und ungefähr 95° Badtemp. sublimiert; Ausb. 99,6 g.

Dieses Sublimat wird unter Ausschluß von Feuchtigkeit mit 750 ml CCl₄ in der Siedehitze extrahiert. Die Extraktionslösung wird zur Trockene eingedampft und der feste Rückstand bei 0,01 Torr und 70° Badtemp. sublimiert; Schmp. 119-121°, Ausb. 40,1 g.

MG gef. (Dampfdruckosmometer, CHCl₃): 340 \pm 5.

NMR-Spektren: Die ¹H-Spektren wurden in CCl₄ oder Acetonitril mit TMS als int. Standard aufgenommen, die ¹⁹F- und ³¹P-Spektren in Acetonitril: Verwendete Geräte: XL-100 (Varian) und PS-100 (Jeol).

Massenspektren: Die Spektren wurden mit einem Variamat SM 1 B (Varian) aufgenommen. Die Auswertung erfolgte mit Hilfe eines Computers. Der rel. Fehler der Intensität beträgt \pm 5%.

 $(CH_3NPF_3)_4: m/e \text{ (rel. Int. \%)}$

 $\begin{array}{c} 332 \ (3,6), \ 235 \ (1,8), \ 234 \ (59,0), \ 215 \ (30,0), \ 199 \ (3,2), \ 190 \ (5,8), \ 186 \ (2,8), \\ 119 \ (2,2), \ 118 \ (100,0), \ 117 \ (27,0), \ 116 \ (69,0), \ 107 \ (4,0), \ 89 \ (2,8), \ 88 \ (6,0), \\ 69 \ (9,0), \ 43 \ (3,4), \ 29 \ (19,0), \ 28 \ (19,0), \ 27 \ (1,5), \ 17 \ (1,9). \end{array}$

peak-matching: Referenzsubstanz PFK.

 $(CH_3N)_4P_3F_6^+PF_6^-$ und $(CH_3N)_4P_3F_7$

m/e^{-}	genaue Massenzahl	ber. Massenzahl	für
342	342,0180	342,0163	$(CH_3N)_4P_3F_7$
323	323,0160	323,0179	$(CH_3N)_4P_3F_6$
225	225,0179	225,0208	$(CH_3N)_3P_2F_4$
215	214,9921	214,9926	$(CH_3N)_2P_2F_5$
186	185,9662	185,9661	$CH_3NP_2F_5$

67*

1054 K. Utvary u. a.: Ringsysteme durch Behandlung von (CH₃NPF₃)₂

Die IR-Spektren wurden mit einem Doppelgitterspektrographen (Perkin-Elmer 457) aufgenommen.

(CH₃NPF₃)₄ in CCl₄ und CS₂

3030 (w, Sch), 2978 (m), 2915 (w), 1469 (st), 1427 (w), 1171 (st), 1085 (sst), 1078 (m, Sch), 1068 (m, Sch), 960 (w), 890 (sst), 832 (sst), 747 (m), 722 (w), 542 (st), 411 (m) cm⁻¹.

(CH₃N)₄P₃F₆⁺PF₆⁻ in KEL-F und Nujol

3038 (w, Sch), 2982 (m), 2912 (w), 2847 (w), 1468 (m), 1445 (m, Sch), 1438 (m, Sch), 1405 (w), 1235 (m, Sch), 1210 (sst), 1171 (st), 1130 (st), 1112 (m, Sch), 1103 (sst), 975 (w), 947 (sst), 885 (sst), 811 (w), 788 (w), 745 (st), 561 (st) cm⁻¹.

(CH₃N)₄P₃F₇ in CCl₄ und CS₂

3000 (w, Sch), 2958 (m), 2915 (w, Sch), 2897 (w), 2828 (w), 1469 (m), 1456 (m, Sch), 1431 (m, Sch), 1279 (sst), 1210 (st), 1189 (m), 1159 (st), 1136 (sst), 1125 (sst), 1115 (m, Sch), 947 (sst), 915 (sst), 892 (sst), 863 (sst), 811 (sst), 788 (st), 758 (sst), 731 (m), 700 (w), 664 (w), 602 (w), 581 (m) cm⁻¹.

Literatur

¹ K. Utvary und W. Czysch, Mh. Chem. 100, 681 (1969).

- ² W. Czysch, Dissertation, Technische Hochschule, Wien (1971).
- ³ Über die NMR-Spektren soll gesondert berichtet werden.